Tethered Nanosatellites Development

George Zhu, PhD, PEng

Associate Professor Director of Space Engineering Undergraduate Program

Outline of Presentation

- Drivers for Tethered Nanosatellite Technology
- Technical Challenges
- Current Research Activities at York
- Needs for Capacity Building
- Demonstration Missions

Nanosatellites:

- **Pros:** S More affordable
 - So can fly frequently and new technology
 - Short development time
 - **b** more responsive to emerging needs
- Cons: The Constant of Constant Constant of Constant of
 - Source carry out complex task
 - Poor attitude control accuracy

\$ cannot carry out critical mission

- **Possible Solutions to the limitations:**
 - (a) Increase NanoSat's capacity and control functionalities
 - ♥ larger monolithic satellite against the nanoSat concept
 - (b) Formation fly of a cluster of nanosatellites
 - **b** very desirable for future space missions

Formation fly of a clusters of micro/nano/pico-satellites

has been recognized to be more affordable, robust and versatile than building a large monolithic satellite in implementing next generation space missions requiring large apertures or large sample collection areas and sophisticated earth imaging/monitoring.

Limitation for Nanosatellite Formation Fly:

Prohibitive for nanosatellites to carry the required fuel.

Alternative Solution:

Tethered formation fly of a cluster of nanosatellites for increased performance by combining two technologies

Tethered spacecraft technology

b maintaining the orbiting tethered vehicles without fuel cost

Formation flying technology

\$ spatially reconfiguring the free-flying vehicles on demand

Advantages of Tethered NanoSat

Maintain formation fly of nanosatellites without fuel cost

Propellantless Propulsion – Electrodynamic tether

- **Enable propellantless propulsion to**
 - attitude control of nanosatellites
 - change orbits of clusters for difference mission tasks
 - de-orbiting the clusters after their mission
- **Enable formation fly of nanosatellite clusters for**
 - higher angular & spatial resolution imagery and interferometry
 - GPS occultation

YORK

- robust & redundant fault-tolerant system architectures
 - networks dispersed over clusters of satellites in space

Advantages of Tethered NanoSat

- Enable variable baseline for interferometric observations by varying tether length
- Enable continuous coverage of the observation by spinning the formation cluster
- **Enable larger coverage of the observation by multiple sensors**

Technical Challenges

Tethered Satellite Concept is not new but tethered nanosatellites is not yet demonstrated

The challenges:.

- **Tether Deployment and Control**
- Formation Sensing and Control

(non-Keplerian motion of tethered nanosatellites)

Decentralized Control and Stabilization

(gravity-gradient, aerodynamic and electrodynamic)

15 years experiences in Low-tension tether dynamics and tether handling system

- Nanosatellite termination using electrodynamic tether
- Deploying/Recovering neutrally buoyant sonar array onboard nuclear submarine
- □ Aerial refuelling house/drogue system
- Design Tool Development
 - Novel Nodal Position Finite Element Method for Tether
 Dynsmics

- <u>Dynatow</u> for sonar array handling system, licensed to several navy establishment
- <u>Aerotow</u> for aerial refuelling system, licensed to one air force⁴⁴

Tethered Nanosatellite formation flying testbed – Funded by NSERC

Low-cost, GPS-aided inertial integrated navigation technology to enable the autonomous navigation capability

Educational QuickSat*

Solar Panel

Structural Frame

Needs for Capacity Building

- Build and test the tethered nanosatellite formation fly a enabling technology for future space missions
- **HQP** training support to carry out the research
- **Develop expertise in the field of Tethered nanosatellite**
- □ Acquire expertise and resources which are available within the university

Technical Demonstration Mission Tethered Nanosatellites

On-Orbit Testbeds

Seeks to demonstrate tethered nanosatellite technology:

- Deployment of tethered nanosatellites
- Orbital and attitude control using electrodynamic tether
- Enhanced measurement of air quality (CO₂, water) using multiple low-cost miniature instruments onboard tethered nanosatellite formation

